
Welcome forward to week 2!



Quiz everyone say YAY!



while (true) {
check_feedback();

}

How was the quiz?

A. easy
B. mostly fine
C. mostly fine, but not enough time
D. too hard, but finished mostly in 

time
E. too hard and not enough time
F. too hard regardless of time



Stress

● 439H is not an easy class
○ Lots of new material
○ Unfamiliar programming environments
○ Fast, often relentless pace

● Struggling in this course is normal
○ There will be times you won’t know the answer or solution
○ This is expected - we want everyone to succeed, but the only way we can help is if you ask for 

it
● If you find yourself overwhelmed or spending more time on this class than you 

think you should be, please reach out to Dr. Gheith or the TAs
○ We can help out as far as the class goes
○ We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu


P2



while (true) {
check_feedback();

}

How is p2 going?

A. Thereʼs a p2???
B. Cloned the project.
C. Looked through the starter code.
D. Started planning/writing code
E. Done with at least one part of the 

project
F. p2 speedrun any% glitchlessif (feedback.max() == 'A') {

    Debug::panic("");
}



Event loop

● What is an event loop?
● How would we implement the event loop?

○ How do we add events?
○ How do we actually run events?
○ How do we switch to different events?



Event

● Some work to be run at some time
● Events can be run after a specified delay

○ pit.h has a lovely jiffies counter



Channels

● What is a channel?



Channels

● What is a channel?
○ Communication method between different events in our case

■ Similar to coroutines
○ Buffer of size 1 (different from coroutines!)
○ send optionally takes in a callback with no arguments
○ receive optionally takes a callback with one argument
○ Callbacks run immediately if a value/space is available
○ Callbacks are delayed until they can match up appropriately

● Implementation considerations
○ How do you make sure callbacks are called at the appropriate time?
○ How do you hand off values from senders to receivers?



Futures

● What is a future?



Futures

● What is a future?
○ Holds a value that will be set at some point by some event
○ setting the value is straightforward

■ setting the value more than once is undefined behavior
○ getting the value takes in a callback with one argument

■ Only called once the value is actually set

● Implementation considerations
○ How do you mark a value as ready or not?
○ How do you make sure callbacks are called at the appropriate time?



Barriers

● What is a barrier?



Barriers

● What is a barrier?
○ Waits until n events have called sync to run all of their callbacks
○ Calling sync more than n times is undefined behavior

● Implementation considerations
○ How do you make sure callbacks are called at the appropriate time?



Explain how the event class works (the polymorphism)

● What's virtual?
● Every closure has a different type
● Queue<EventWithWork<???>>
● What can we call the closure?
● EventWithWork inherits from Event
● overrides doit to call the closure
● You can pass EventWithWork* to 

something that uses Event*



Questions?


