Welcome forward to week 2!

Quiz everyone say YAY!

How was the quiz?

. easy
while (true) { . mostly fine
Check_feedback() ; . mostly fine, but not enough time
} . too hard, but finished mostly in

time
too hard and not enough time
too hard regardless of time

Stress

e 439H is not an easy class
o Lots of new material
o Unfamiliar programming environments
o Fast, often relentless pace
e Struggling in this course is normal
o There will be times you won’t know the answer or solution
o This is expected - we want everyone to succeed, but the only way we can help is if you ask for
it

e If you find yourself overwhelmed or spending more time on this class than you
think you should be, please reach out to Dr. Gheith or the TAs

o We can help out as far as the class goes
o We can provide other resources if we are not able to help

Mental health resources available at UT

https://cmhc.utexas.edu

P2

How is p2 going?

There’s a p27??

: . Cloned the project.

while (true) {) . Looked through the starter code.

check_feedback(); . "

) . Started planning/writing code
Done with at least one part of the
project

if (feedback. maX() = "A") | . p2 speedrun any% glitchless

Debug: :panic("");

}

Event loop

e What is an event loop?

e How would we implement the event loop?
o How do we add events?
o How do we actually run events?
o How do we switch to different events?

Event

e Some work to be run at some time

e FEvents can be run after a specified delay A . |
static uint32_t jiffiesPerSecond;
o pit.hhasalovely jiffies counter static uint32_t apitCounter;

public:

static uint32_t jiffies;

static void calibrate(uint32_t hz);

static void init();

static uint32_t secondsToJiffies(uint32_t secs) {
return jiffiesPerSecond * secs;

b

static uint32_t seconds(void) {
return jiffies / jiffiesPerSecond;

return 0;

Ji

#endif

Channels

e Whatis a channel?

Irish Se . ~
Eaix

Jcean

Channels

e Whatis a channel?
o Communication method between different events in our case

m Similar to coroutines
Buffer of size 1 (different from coroutines!)
send optionally takes in a callback with no arguments
receive optionally takes a callback with one argument
Callbacks run immediately if a value/space is available
Callbacks are delayed until they can match up appropriately

e Implementation considerations

o How do you make sure callbacks are called at the appropriate time?
o How do you hand off values from senders to receivers?

o O O O O

Futures

e What is a future?

Futures

e What is a future?

o Holds a value that will be set at some point by some event
o setting the value is straightforward

m setting the value more than once is undefined behavior
o getting the value takes in a callback with one argument

m Only called once the value is actually set

e Implementation considerations

o How do you mark a value as ready or not?
o How do you make sure callbacks are called at the appropriate time?

Barriers

e What is a barrier?

Barriers

e What is a barrier?

o Waits until n events have called sync to run all of their callbacks
o Calling sync more than n times is undefined behavior

e Implementation considerations
o How do you make sure callbacks are called at the appropriate time?

Explain how the event class works (the polymorphism)

e What'svirtual?
. struct Event {
e FEvery closure has a different type Eosnd NN
® Queue<EventWithWork<??2?2>> virtual void doit()
virtual ~Event() {}
e What can we call the closure? 35
® FEventWithWork inherits from Event IRttt R
. . struct EventWithWork: public Event {
e overrides doit to call the closure const Work work:
e Youcan pass FventWithWork* to explicit inline EventWithWork(const Work& work)

: work(work) {}

Something that uses Event* virtual void doit() override {
work();

Questions?

